

Automatisation de la Sélection des Spermatozoïdes avant ICSI

Nino Guy Cassuto Labo Drouot Paris

Journée des Techniciens et Biologistes en AMP

The major phytocannabinoids, delta-9-tetrahydrocannabinol (THC) and
cannabidiol (CBD), affect the function of CatSper calcium channels in **human**

cite sperm.

Wehrli L, Altevogt H, Brenker C, Zufferey F, Rossier MF, Strünker T, Nef S, Rahban R.

Hum Reprod. 2025 Mar 12:deaf020. doi: 10.1093/humrep/deaf020. Online ahead of print.

PMID: 40078063

STUDY QUESTION: Do the main psychoactive phytocannabinoid delta-9-tetrahydrocannabinol (THC) and its non-psychoactive analog cannabidiol (CBD) affect **human sperm** function? SUMMARY ANSWER: THC and CBD affect the **sperm**-specific Ca2+ channel CatSper, suppress ac ...

Log in

PUBLICATION DATE

2025

Advanced methods like magnetic-activated cell sorting (MACS) and microfluidic sorting have emerged as more precise tools for **selecting sperm** with better **genetic** integrity, although they face challenges in terms of their standardization, cost, and clinical ado ...

Log in

1975

Total Fertility Rate TFR, globally and by Global Burden of Diseases GBD 1950 – 2100

Spermatozoa over the time

1951	100 Millions/ ml
1970	90 Millions/ ml
1974	75 Millions/ ml
1998	55 Millions/ ml
2005	51 Millions/ ml

50 Millions / ml decrease in 50 years

Human Reproduction Update November 2017

Potential effects of exposure to environmental factors on declining fertility rates

A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality

Nino Guy Cassuto, M.D.,^a Dominique Bouret, M.D.,^a Jean Michel Plouchart, M.D.,^a Sonia Jellad, M.D.,^a Pierre Vanderzwalmen, M.S.,^a Richard Balet, M.D.,^b Lionel Larue, M.D.,^c and Yona Barak, Ph.D.^d

TABLE 1

Study 1: fertilization, rate of development, and blastocyst expansion in correlation to the classification of the injected motile spermatozoon.

Sperm classification	Class 1 21 % (46/218)	Class 2 59% (128/218)	Class 3 20% (44/218)	Total number of spermatozoa (N = 218)
Fertilization rate	84% (39/46) ^a	73% (94/128) ^a	61% (27/44) ^a	73% (160/218)
Total blastocysts and morulae	37% (17/46)	26% (33/128)	16 <u>% (7/44)</u>	26% (57/218)
Expanded blastocysts	15% (7/46) ^b	9% (12/128) ^b	0 (0/44) ^b	33% (19/57)

Score = Head x2 + Vacuole x3 + Base x1 = 6

Vanderzwalmen P. RBMO 2008 Setti AS. J A Rep Gen 2012 Greco E. F S 2013 Balaban B. RBMO 2011 Tanaka A. F S 2012 Knez K. Rep Bio Endoc 2011 and RBMO 2012 El Khattabi L. F S 2013

Strict morphological criteria for sperm head

Score 0 Score 6 Spermatozoa Blastocyst Bad Good

Morphological criteria are used to score spermatozoa at high magnification (6100x) and to assess expended good blastocyst quality

Original Article

Impact of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI) on Birth Defects: A Systematic Review and Meta-Analysis

Felipe Dieamant^{1,2}, Claudia G Petersen^{1,2}, Laura D Vagnini², Adriana Renzi², Bruna Petersen^{1,2}, Fabiana Massaro¹, Camila Zamara¹, Andreia Nicoletti¹, Juliana Ricci¹, Antonio H Oliani³, João Batista A. Oliveira^{1,2}, José G. Franco Jr^{1,2}

May 2021

IMSI vs. ICSI: Total birth defects(structural-defects/chromosomal- abnormalities).

Total birth defects	ICSI(n/N)	IMSI(n/N)	RR	95% CI
Cassuto et al.,2014	22/578	6/450	0.35	0.15-0.83
Hershko-Klement et al.,2016	71/1394	18/498	0.71	0.43-1.17
Gaspard et al.,2018	26/655	8/332	0.61	0.28-1.30
Total	119/2627	32/1280	0.60	0.41-0.88
Chi ² =6.7; <i>P</i> <0.01				
Cochran's Q=1.8;P=0.4				

ESHRE - Vienna June 2019

ANDROLOGY

Sperm fluorescence in situ hybridization study in nine men carrying a Robertsonian or a reciprocal translocation: relationship between segregation modes and high-magnification sperm morphology examination

Nino Guy Cassuto, M.D., ^a Nath Dominique Bouret, M.D., ^a Alex and Jean Pierre Siffroi, M.D., I	alie Le Foll, M.I andre Rouen, M. Ph.D. ^b	D., ^b Sandra Chantot D., ^b Rakia Bhouri, J	^e -Bastaraud, M.D., ^b M.D., ^b Capucine H	Richard Balet, M.I.	used		
TABLE 3			miors Ca				
Sperm fluorescence in situ hybridization (FISH) result translocations carriers.							
High-magnification		halanc	ed chromo	DSOIIIai C	P8		
MSO Lect Sperm C	cells with	Class III: 50	Class I: 25 Class II: 50 Class III: 25	Class I: 10 Class II: 60 Class III: 30	Class I: 5 Class II: 60 Class III: 35		
Altern to select sp							
NS 10 50%	44.40%	52.60%	47.80%	37.10%	44%		
Clast X	43.40%	53%	59.60%	23.40%	40%		
Glass II 43.30%	6.7 6 10/c	6/10/2	6606	35 50%			

Chelli MH. J A Rep Gen 2013

MDPI

Brief Report

Different Nuclear Architecture in Human Sperm According to Their Morphology

Nino-Guy Cassuto ^{1,*}, Nesrine Ogal ², Said Assou ³, Lea Ruoso ¹, Eli-Jonathan Rogers ², Miguel-José Monteiro ¹, Daniel Thomas ¹, Jean-Pierre Siffroi ² and Alexandre Rouen ^{4,5,*}

A Score 0 spermatozoa exhibit significantly higher inter-telomeric distances

B Score 0 spermatozoa exhibit significantly higher chromosomal territory areas for chromosome 1.

Table I Evaluation of sperm chromatin compaction in large vacuole spermatozoa, isolated using MSOME.

Table II Evaluation of sperm DNA fragmentation in large vacuole spermatozoa, isolated using MSOME.

Studied population	Large vacuole definition	Sperm DNA fragmentation analysis	Percentage of spermatozoa with fragmented DNA (mean <u>+</u> s.e.m.) (%)			Р	
			MSOME normal spermatozoa (n)	Large vacuole spermatozoa (n)			
30 Infertile patients	>50% of the sperm head area	TUNEL (fixation: methanol-acetic acid)	15.9% (410)	29.1% (382)		<0.0001	
10 Infertile patients oligozoospermia	Not defined	TUNEL (fixation: paraformaldehyde 4%)	9.3 ± 4.8% (100)	40.1 ± 11.6% (100)		<0.001	
8 Infertile patients	>4% of the sperm head area	TUNEL (fixation: paraformaldehyde 4%)	6. I ± 7.2% (33 I)	14.7 ± 7.2% (529)		=0.031	
15 Infertile patients	>25% of the sperm head area	TUNEL (fixation: ethanol 95%)	0.7 ± 0.4% (450)	$1.3 \pm 0.4\% (450)$		NS (=0.25)	
20 Infertile patients Teratozoospermia	>13% of the sperm head area	TUNEL (fixation: methanol)	Unselected spermatozoa from native sample 11.5 ± 1.22% (10040)	14.5 <u>+</u> 3.45% (560)		NS (=0.68)	
10 Infertile patients 2 Sperm donors	>1.5 μm and visible at ×400 magnification	TUNEL (fixation: paraformaldehyde 4%)	3.5% (2252) 2.3% (398)	3.3% (209) 0% (18)		NS NS	
8 Infertile patients with high DNA fragmentation rates >13%	>4% of the sperm head area	TUNEL (fixation: methanol-acetic acid)	4.I ± I.I% (I9I)	Anterior vacuoles 15.9 ± 2.9% (368) (a)	Posterior vacuoles 22.5 ± 3.6% (402)(b)	(a): <i>P</i> = 0.013	b): <i>P</i> = 0.00
			Unselected spermatozoa from native sample 26.1 ± 1.5% (8000)		(102)(0)	(a): <i>P</i> = 0.02	b): <i>P</i> = 0.44
26 Inferrite patients, Oligoar penoteratozoospermia	Score 0	TUNEL	Unselected spermatozoa	Score 0 4.2 ± 5.5% (2600))	NS	J
evious IVF failures	(Cassuto et al., 2009)		3.7 ± 6.7% (2600)	Perdrix A HR 201		2013	
	30 Infertile patients 10 Infertile patients 30 gozoospermia 8 Infertile patients 15 Infertile patients 20 Infertile patients Teratozoospermia 10 Infertile patients 2 Sperm donors 8 Infertile patients with high DNA fragmentation rates > 13% 26 Infertile patients, Oligo menotenatozoospermia, 10 Infertile patients,	30 Infertile patients >50% of the sperm head area 10 Infertile patients Not defined 31gozoospermia >4% of the sperm head area 8 Infertile patients >4% of the sperm head area 15 Infertile patients >25% of the sperm head area 20 Infertile patients >13% of the sperm head area 20 Infertile patients >13% of the sperm head area 10 Infertile patients >1.5 µm and visible at x400 magnification 8 Infertile patients with high DNA >4% of the sperm head area 26 Infertile patients, core patients, core 0 Score 0 26 Infertile patients, core of filter the spermiation rates Score 0	30 Infertile patients >50% of the sperm head area TUNEL (fixation: methanol-acetic acid) 10 Infertile patients Not defined TUNEL (fixation: paraformaldehyde 4%) 31gozoospermia >4% of the sperm TUNEL (fixation: head area 31gozoospermia >4% of the sperm TUNEL (fixation: head area 31 Infertile patients >4% of the sperm TUNEL (fixation: tratoric fixation: sperm head area 30 Infertile patients >13% of the sperm head area TUNEL (fixation: methanol) 30 Infertile patients >13% of the sperm head area TUNEL (fixation: methanol) 30 Infertile patients >1.5 µm and visible at x400 magnification TUNEL (fixation: methanol-acetic acid) 30 Infertile patients with high DNA figgmentation rates >13% >4% of the sperm head area TUNEL (fixation: methanol-acetic acid)	MSOME normal spermatozoa (n) 30 Infertile patients >50% of the sperm head area IUNEL (fixation: methanol-acetic acid) IS.9% (410) 10 Infertile patients Not defined TUNEL (fixation: methanol-acetic acid) 9.3 ± 4.8% (100) 30 Infertile patients Not defined TUNEL (fixation: paraformaldehyde 4%) 9.3 ± 4.8% (100) 31 Infertile patients >4% of the sperm head area TUNEL (fixation: paraformaldehyde 4%) 0.7 ± 0.4% (450) 20 Infertile patients >13% of the sperm head area TUNEL (fixation: methanol) 0.7 ± 0.4% (450) 20 Infertile patients >13% of the sperm head area TUNEL (fixation: methanol) 0.7 ± 0.4% (450) 20 Infertile patients >13% of the sperm head area TUNEL (fixation: methanol) 0.15 ± 1.22% (10040) 10 Infertile patients >1.5 µm and visibe at ×400 magnification TUNEL (fixation: methanol-acetic acid) 3.5% (2252) 8 Infertile patients with high DNA fragmentation rates >13% >4% of the sperm head area TUNEL (fixation: methanol-acetic acid) 4.1 ± 1.1% (191) 26 Infertile patients, Oling unenotenetrazoopermia, from native sample 26.1 ± 1.5% (8000) TUNEL Unselected spermatozoa from native sample 26.1 ± 1.5% (8000)	MSOME normal spermatozoa (n)Large vacuole spermatozoa (n)30 Infertile patients>50% of the sperm head areaTUNEL (fixation: methanol-acetic acid) 5.9% (410) 29.1% (382)10 Infertile patientsNot definedTUNEL (fixation: paraformadehyde 4%) $9.3 \pm 4.8\%$ (100) $40.1 \pm 11.6\%$ (100)31 Infertile patients>4% of the sperm head areaTUNEL (fixation: paraformadehyde 4%) $9.3 \pm 4.8\%$ (100) $40.1 \pm 11.6\%$ (100)31 Infertile patients>4% of the sperm head areaTUNEL (fixation: paraformadehyde 4%) $0.7 \pm 0.4\%$ (450) $1.3 \pm 0.4\%$ (450)30 Infertile patients>25% of the sperm head areaTUNEL (fixation: methanol 95%) $0.7 \pm 0.4\%$ (450) $1.3 \pm 0.4\%$ (450)30 Infertile patients>13% of the sperm head areaTUNEL (fixation: methanol) $0.7 \pm 0.4\%$ (450) $1.45 \pm 3.45\%$ (560)30 Infertile patients>15.5 µm and wishbe at ×400 magnificationTUNEL (fixation: araformadehyde 4%) $0.7 \pm 0.2\%$ (10040) $1.45 \pm 3.45\%$ (560)31 Infertile patients>1.5 µm and wishbe at ×400 magnificationTUNEL (fixation: araformadehyde 4%) 2.3% (252) 3.3% (209)31 Infertile patients with high DNA fragmentation rates >13\%>4% of the sperm head area $1.1 \pm 1.1\%$ (191) methanol-acetic acid)Anterior vacuoles IS.9 $\pm 2.9\%$ (368) (a)26 Infertile patients, ClipschenterScore 0 TUNELUnselected spermatozoa from native sample $2.5.1 \pm 1.5\%$ (8000)Score 0 4.2 $\pm 5.5\%$ (2600)26 Infertile patients, ClipschenterScore 0 TUNEL	MSOME normal spermatozoa (n)Larger excuole spermatozoa (n)30 Infertile patients>50% of the sperm head areaTUNEL (fixation: methanol-acetic acid) 59% (410) 29.1% (382)10 Infertile patientsNot definedTUNEL (fixation: paraformaldehyde 4%) $9.3 \pm 4.8\%$ (100) $40.1 \pm 11.6\%$ (100)31gozoospernia>4% of the sperm head areaTUNEL (fixation: paraformaldehyde 4%) $9.3 \pm 4.8\%$ (100) $40.1 \pm 11.6\%$ (100)31gozoospernia>4% of the sperm head areaTUNEL (fixation: paraformaldehyde 4%) $0.7 \pm 0.4\%$ (450) $1.3 \pm 0.4\%$ (450)31s Infertile patients>25% of the sperm head areaTUNEL (fixation: methanol) $0.7 \pm 0.4\%$ (450) $1.3 \pm 0.4\%$ (450)20 Infertile patients>13% of the sperm head areaTUNEL (fixation: methanol) $0.7 \pm 0.4\%$ (450) $1.4 \pm 3.45\%$ (560)20 Infertile patients>15.9 μ mand wishe at x-400 magnificationTUNEL (fixation: a sperm donors $1.45 \pm 3.45\%$ (560)21 Infertile patients>1.5 μ mand wishe at x-400 magnificationTUNEL (fixation: a sperm donors 3.5% (225) 3.3% (209)2 Sperm donorsvishe at x-400 magnificationTUNEL (fixation: methanol-acetic acid) $1.1 \pm 1.1\%$ (191)Anterior vacuoles A spectra and (402)(b)26 Infertile patients, fagmentation rates >13%Score 0 spermatozoaTUNEL methanol-acetic acid) $0.11 \pm 1.5\%$ (2000)26 Infertile patients, Constant andScore 0 spermatozoaTUNEL fickation: thethanol-acetic acid)Score 0 4.2 \pm 5.5% (2600) 	MSOME normal spermatozoa (n)Large vacuole spermatozoa (n)30 Infertile patients>50% of the sperm head areaTUNEL (fixation: methanol-acetic acid)15.9% (410)29.1% (382)<0.0001

Genome-wide microRNA expression profiling in human spermatozoa and its relation to sperm quality NG. CASSUTO ¹, L. RUOSO ¹, G. KEROMNES ², L. PRAT-ELLENBERG ³, N. LEDEE ⁴, C. CHAO ³, H. MOUIK ⁴, S. ASSOU ⁷

(A) Principal Component Analysis (PCA) in 3-dimensional piols represents the different miRNA expression patterns from the 10 samples. Two distinct groups were obtained based on their miRNA expression profiles. (B) The dendrogram shows that the 5 samples S6 clustered in 1 Red branch. The 5 samples S0 samples in 1 Blue branch.

A) Violin plot comparing the top ten microRNAs that are differently expressed in Score 6 (n = 5) and Score 0 samples (n = 5). (B) The heat map showed a nolecular signature based on the 10 selected microRNAs upregulated in S6 /s. S0.

The profiling of miRNAs repertoire in scored spermatozoa morphology opens new perspectives to explore male fertility status and provides a biomarker panel for sperm analysis during the ART procedure.

Morphology and Gene expression

Top-ranked functional protein interaction network

CFAP46 Cilia And Flagella Associated Protein 46

Artificial Intelligence and Subjectivity

WHAT INFLUENCES SUBJECTIVITY ???

All data we generate remains stored and used for a decision no operator-dependent

What's AI Technology ?

Artificial Intelligence

Machine Learning

Deep Learning

ARTIFICIAL NEURAL NETWORKS

MAGE RECOGNITION

Al needs huge data! It's a hungry giant!!!

Data: 800 hours of videos: More than 3 months in continued vision

Sorted:15 000 frames were randomly captured

Arranged: by embryologist experts labeling and classified

Presented visually on the screen Machine learning / Deep learning Teach the machine to do the job

AI Modules

- Cell Detection
- Cell Morphology Classification
- Cell 3D Tracking & Motion Estimation

Standalone application:

- During runtime, the Al modules apply mathematical operations to the input matrices.
- 2. The output is a probability vector.
- The mathematical operations are learnt during system development
- 4. Annotated datasets are utilized for learning.

Algorithms Block Diagram

= AI Module

1 - Al Module

Cell Detection: Al

- Input: a video frame 30 frames /Seconds
- Output: a list of cell-bounding boxes
- θ = neural network parameters¹

Output: tabulated data (a matrix)

Bounding box overlay

¹ θ = parameters that describe the mathematical operation applied to the input image;

these parameters are optimized as to minimize the detection error with respect to manually-annotated images.

² values are relative to the image width and height.

³ a threshold probability value allows one to exclude non-cell bounding boxes.

2 - Al Module

Cell Morphology Classification

- Input: a cell bounding-box image¹
- Output: probability vector (normal, abnormal)
- θ = neural network parameters

¹ All cell bounding-box images undergo morphology classification.

3 - Al Module

Input:

detection results of

consecutive frames

Cell 3D Tracking & Motion Estimation

- Lateral Direction (not AI):
 - Input: a sequence of detection results
 - Output: a sequence of cell trajectories
 - · Autoregressive motion model

Axial direction, Focus: AI

- Input: image of a cell
- Output: a probability vector
- θ = neural network parameters

Input:cell image (e.g., below focus) (p,q,r)

p = probability of being below focus plane q = probability of being in focus

r = 1 - p - q = probability of being above focus

Output:argmax over the probability vector

• Selected Cell:

• Stage x-y position:

motion of the cell.

- can compensate for cell lateral movement
- can keep the cell at the center of the field of view.
- Objective lens z-position: can correct for defocus situations that originate from the axial
- Motion estimation from track information over multiple frames.

y Width Height

0.20 0.80 0.10 0.20

0.45 0.95 0.15 0.10

0.50 0.75 0.08 0.25

0.92 0.05 0.10 0.12

frame n

Probability

0.9

0.88

0.81

0.73

Output: cell tracks Track 2 $(x,y) = (0.45, 0.95) \rightarrow (0.43, 0.90) \rightarrow (0.43, 0.90)$

v Width Height Probability

Frame n+1

0.92

0.83

0.81

0.73

0.43 0.90 0.13 0.10

0.25 0.77 0.18 0.22

0.51 0.69 0.12 0.25

0.90 0.08 0.11 0.15

Track 1 $(x,y) = (0.2,0.80) \rightarrow (0.25, 0.77) \rightarrow$

Track 3 $(x,y) = (0.50, 0.75) \rightarrow (0.51, 0.69) \rightarrow$ Track4 $(x,y) = (0.92, 0.05) \rightarrow (0.90, 0.08) \rightarrow$

 Morphology classification from majority vote of multiple frames.

AI Modules

- AI learning is based on
 - Datasets with ground truth annotations
 - neural network architectures
 - numerical optimization of loss functions
 - performance analysis & generalization safeguards to unseen data.

focus

above at focus focus

Cell Focus Dataset Exemplar

Cell Classification Dataset Exemplar

How It Works – AI Classification

Al classifies sperm cells' morphology at high magnification

- Proprietary algorithm processes the video stream of "live" sperm in real time
- Autonomously classifies sperm cells based on their morphology & motility at high-magnification (×6,100) 30 frames /Seconds
- Proprietary BAIBYS' algorithm controls the motorized X-Y stage in real time to maintain the selected sperm cell in the middle of the field of view to allow reviewing the cell from all sides

FPS: 39	Sīde	1	Frame: 6631
See. 1			
mul-1.78732179406973	spore:2/30		
s-speed:38			
	Lock ID: 212		
100 00	Good		
J	212 3core.28/30		
0/			
Stage Active (Scoring)	2021-06-30_21:38_208a67a?		

SAIBYS

HOW IT'S WORK

Control Panel of the system and Codes for all the system generated by AI

apping the cartridge at low magnification

Conclusions

Morphology is correlated with the DNA quality; Sperm selection before ICSI is a crucial step; because we are at the beginning of the process. Autonomous sperm selection system;

based on DNA quality and epigenetic profiles.

MERCI

